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Interface fluctuations, Burgers equations, and coarsening under shear
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We consider the interplay of thermal fluctuations and shear on the surface of the domains in various systems
coarsening under an imposed shear flow. These include systems with nonconserved and conserved dynamics,
and a conserved order parameter advected by a fluid whose velocity field satisfies the Navier-Stokes equation.
In each case the equation of motion for the interface height reduces to an anisotropic Burgers equation. The
scaling exponents that describe the growth and coarsening of the interface are calculated exactly in any
dimension in the case of conserved and nonconserved dynamics. For a fluid-advected conserved order param-
eter we determine the exponents, but we are unable to build a consistent perturbative expansion to support their
validity.
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I. INTRODUCTION N(k)~|k|*"#,  |k]—0. (2

This paper deals with the influence of shear on interfacialn Eq. (1) we have retained only the leading-order nonlinear-
fluctuations in phase-ordering or phase-separating systemisy, which is associated with the shear. In this limit, the noise
The primary motivation is the need to understand the influcorrelator has the same form as in the zero-shear case,
ence of thermal fluctuations on coarsening under shear. Thenamely (in Fourier space {7(k,t) p(k,t"))~|k|* 16(k
mal fluctuations are not normally thought to be important for+k’) 5(t—t’), where this particular form follows, via the
coarsening systems, as the dynamics is controlled by fluctuation-dissipation theorem, from the zero-shear station-
“strong coupling,” i.e., zero temperature, fixed point and ary state P[h(x)]«exd —constfd®x(Vh)?]. The parameter
temperature is formally an irrelevant perturbat/dn Under specifies the particular dynamical model under consider-
an externally imposed shear flow, however, the growing doation. Particular cases of physical relevanceasel (a non-
mains become stretched in the flow directj@r-8] and there  conserved order parameter, or “mod&l in the classifica-
is evidence, especially in two spatial dimensions, that growthion of Hohenberg and Halperifil1]), »=2 (a conserved
in the transverse direction is strongly suppred$eds|. This  order parameter obeying the Cahn-Hilliard equation, or
raises the possibility that thermal roughening of the interfacemodel B”), and x=0 (a conserved order parameter
might destroy the coarsening state. On the other hand, théoupled to hydrodynamic flow in the viscous regime, or
thermal roughening is itself suppressed by the shear flow, semodel H” ).
the question of the survival of the coarsening regime to late The derivation and RG analysis of Ed.) will form the
times rests on a delicate balance between these two effectgain part of this work. Since the system is anisotropic due to

A second motivation for this study emerges from thethe shear, we writex=(x,x,), wherex is the coordinate
mathematical description of the interfacial fluctuations,along the flow direction, ana, is a (d—2)-dimensional
which takes the form an anisotropic Burgers equaf®a0.  vector perpendicular to the flow. There are, in general, three
The structure of the equation, and the form of the noise corscaling exponentsy, ¢, andz, defined by the condition that
relator, are such that, in a renormalization gr¢Bi®) analy-  the simultaneous scale transformations bx, x, —b?x, ,
sis, some parameters of the theory are not perturbativelyy_.pxh, andt—b? leave the interfacial dynamics scale in-
renormalized. As a result, certain combinations of scalingariant. All three will be determined exactly for all physical
exponents can be determined exactly. Remarkably, the nunyzjyes of . and for alld.
ber of such combinations is in every case equal to the num- The remainder of the paper will consist of a more detailed
ber of unknown exponents, so that all scaling exponents cagiscussion of the physical motivation for these calculations
be determined exactly for any spatial dimensionatity and the analysis and interpretation of the results. The inter-

The structure of the interface equation is very simple. Ifface equations are derived in Sec. Il for mod&ls, andH.
h(x,t) is the interfacial height relative to the mean height, Section 11l contains the RG analysis, while in Sec. IV we
wherex is a (d—1)-dimensional vector specifying position discuss the implications of our results for coarsening systems

in the plane parallel to thenean interface, and is the time,  under shear. Section V concludes with a summary of our
the equation takes the simple form results.

dih+ yhosh=Lh+7(x1), @ IIl. THE INTERFACE EQUATION

wherey is the shear rate, and we have taken the shear flow In each case we will start from the relevant Ginzburg-
to be in thex direction. The linear operatat is diagonal in  Landau equation for the order parameddr,t), and derive
Fourier space, and its eigenvaluegék) have the limiting the interface equation by projecting the full equation of mo-
smallk form tion onto the interface. We assume a coarse-grained free-
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energy functional of the Ginzburg-Landau form therefore a smearedlfunction, which peaks on the interface
and has width,. It will be used below as a projector onto
the interface. Equatio(6) will be used also in the context of
: ()
modelsB andH.
Substituting Eq(6) into Eq. (4) gives, withu=y—h,

1
(V92 + V()

F[¢]=J ddr

where V(¢) is a symmetric double-well potential with

minima at¢= *+ 1, representing the two equilibrium phases. (5,h)f’(u)=— y(u+h)(an)f’(u)—[1+(Vh)2]f"(u)
For pedagogical purposes we begin with the simplest case

of the time-dependent Ginzburg-Landau equatimri‘model + (V) (u) = V' (F) + &(x,u+h(x,t),1).

A") that describes phase-ordering in a system with a non- @

conserved scalar order parameter, i.e., Ising-like systems

such as a twisted-nematic liquid crystal. Finally we multiply through byf’(u) and integrate oveu.
Formally we take the integral from o to o0, but in practice
A. Model A the integral is concentrated in the neighborhoodusfO.
We will consider a uniform shear flow in thedirection, ~ Since f”(u)f’(u) and V'(f)f’(u) are perfect derivatives,
with the velocity gradient in th direction,v=yye,, where these terms drop out. Also the term involviagf’ (u)]? van-
y is the shear strength arg} is the unit vector in thex ishes_by symmetry under the integral. The final result, there-
direction. The dynamics of the system are governed by théore, is
Langevin equation

dh+ yhah=V2h+ 5(x,t). (8)
AL 1)=V2p—V'(p)+E&(r t
tYox T e §)=V7g=Vi(d)+&(r.0), The noise term is given by
(4)
where the second term on the left-hand side is just ¢, 77(X,t)=—(1/0)f duf’ (wéx,u+h(xt),t), (9

and represents the advection of the order parameter by the
shear flow. In Eq(4), a kinetic coefficient has been absorbed
into the time scaley’(¢)=dV/d¢, and&(r,t) is Gaussian
white noise with mean zero and correlator

where o= fdu[f’(u)]? is the surface tension. Clearly the
mean ofy is zero, while use of Eq5) gives its correlator as

(E(r,0)E(r' t'))y=2D8(r—r")8(t—t'), (5) (n(x,t)p(x",t"))=(2D/o) 8(x—x")8(t—t"). (10
where the noise strength is proportional to the tempera- In the zero-shear limit,y=0, Eq. (8) reduces to the
ture. Edwards-Wilkinson mod€l12], and has a simple interpreta-

During the process of phase separation the effect of théon. The interfacial free-energy functional, to lowest order in
shear is to stretch the domains in the direction of the flow(Vh)?, isF,,,=(1/2)/d% *x(Vh)?. The dynamicg8) corre-
making them relatively thin in the transverse direction. Wesponds to the Langevin equatigth= — 6F,,/5h+ 5. The
are, therefore, interested in how thermal fluctuations affechoise strength R/ in Eq. (10) guarantees the correct sta-
the domain walls parallel to the flow direction. Indeed, if tionary distribution,P[ h]eexp(—oF[h]/D).
these fluctuations grow too large, they can break the domains Before moving on to modeB, it is worth noting that for

and disrupt the coarsening process. _ the case of zero shear and zero noise the equation reduces to
To this end we construct an equation for an mterface,simme relaxation. In Fourier space, one had(k,t)

llel to the fl irecti | to th loci - : .
parallel to the flow direction and normal to the velocity gra — —KZh(k,1), i.e., fluctuations on a length scale- 1/k relax

dient, separating the two equilibrium phases of the order pa

. — 2 . . _
rameterg. We are interested in the limit where the interface 9" 2 time _scale—(L) L*. For a coarsening system contain

is almost planar, such tha¥f)? is typically small, wheré ing many interfaces, this relation gives the time schfefor _
is the interfacial height relative to the mean. Therefore, w feature at scale to relax away, and suggests the relation

12 : « . "
are going to systematically neglect terms that are smaller by (1) th for tr:je c_oarsenltng Ier%?]t_h scale, orhdtomé;ur: SC"%"e_
powers of ¥h)? than the terms we retain. In this limit, the N a phase-ordering system. This approach to determining

order-narameter profile is well represented by the simpl oarsening exponents from interfacigllrelaxation rates has
form P P P y P een used beforl3,14], and the predictions agree with the

results obtained from other methddg. Indeed, the result is
H(r,t)=f(y—h(x,t)), (6) more general15]. In any system where coarsening proceeds

by relaxation of extended defect structurg®main walls,
where we have writtem=(x,y), and where¢(x,h(x,t),t)  vortex lines, etg.the dynamical exponert in the relation
=0. Equation(6) simply means that the contour lines ¢f  L(t)~t? for the coarsening dynamics, is the same as that
close to the interface are almost normal to thdirection, obtained from the relaxation rata,(k)~|k|? of a single
which of course is equivalent to saying thath()? is small.  defect with a sinusoidal modulation at wave veckorThe
The functionf (u) is essentially a step function, with a width same general structure will be apparent in the study of mod-
given by the interfacial width&,. Its derivative,f’(u), is  elsB andH.
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B. Model B

1
For conserved dynamics, the time-dependent Ginzburg- WI duf dv exp(—[k[[u=vDf"(WF' (V)
Landau equation is replaced by the Cahn-Hilliard-Cook
equation(i.e., the noisy Cahn-Hilliard equatiprwhich, in
the presence of a uniform shear flow, reads X

d J SF
_d’ + Wa_();/: = Vz% +&(r 1) Recalling thaff' (u) acts as a function atu=0 (of strength

dchy +1yky

1 2
v+ 5T |- (17)

at 2, which is the discontinuity of the order parameter across
= —VAV2p—V'($)]+Er D), (1) the interface Eq. (14) simplifies to
where a transport coefficient has been absorbed into the time +i_ 21— _ T3 + E -
scale. The noise correlator is dih 2 alh 2 K™ 2|k|7]k(t)' 18

(E(r,)&(r' t"))y==2DV28(r—r")8(t—t'). (12 Consider once more the case of zero shear and zero noise.
Then Eq.(18) represents simple relaxation, with fluctuations
As a prelude to further analysis it is convenient to first op-on length scald.~ 1/k relaxing at a raté?, i.e., ask? with
erate on both sides of the equation with the inverse of the=3. This is again consistent with the known coarsening
Laplacian operatofwhose meaning will become clear be- growth law,L(t)~tY3 for modelB [1].
low). Making the same long-wavelength approximati@ The form of the noise correlator can be extracted from Eq.
as in the treatment of mod@l gives (15). Using the same simplifications, as before, yields, in
Fourier space,
(= V?) Y a;h+ y(u+h)ah]f’ (u)
- 4D
= —[1+(Vh)2]f"(u)+ (V2h)f'(u)— V' (f) (ﬂk(t)ﬂ—kf(t'»:W5k,kr5(t—t')- (19
2y—1
(=Y e UFh(X0).1). (13 Equation(18) has, in real space, precisely the form of Eq.
(1), where the operatof has the smallk| spectrumh (k)
~ k|3, i.e., it has the form(2) with u=2. Defining 7,(t)
=1|k| n(t), one recovers Eq(l) exactly, with noise cor-
J’ duf’(u)(—V2) " (u)[ah+ y(u+h)ah] relator

Multiplying by f’(u) and integrating oveu, as before, gives

= oV2h+ p(x.t), (14) (m() 71 (t"))=DIK| Sy s S(t—1"). (20

For modelA, Eg. (8) also has the forn{l), but with u«
=1 in Eq.(2). This suggests that both models be viewed as
o members of a more general class, defined by Egand(2)
n(x,t)z—f duf’ (u)(—V?) " 2&(x,u+h(xt),t). with u general. As discussed in the Introduction, the
(15) requirement that the equilibrium distributionP[h]
xexf —o/22k?hh_,] be recovered fory=0 forces the
noise correlator to have the form 7 (t)n_\(t"))
~|k[#~ 18 s S(t—1"). Our result410) and(20), for models
A andB, respectively, satisfy this requirement.

where the noise is given by

The meaning of the operator-(V?) ! is as follows. In
Fourier space one has-(vV?) '—(k?+q?) 1, where k,q)
is the vector conjugate to(y). Defining, for a general func-
tion F, G(x,y)=(—V?) 'F(x,y), its Fourier transform, in

the (d—1)-dimensional subspace spannedxbys given by C. Model H
1 The general results relating the form of the spectf@n
= R R _ CUINE p of the operatorC in Eq. (1) to the exponent for coarsening
G(k.y) 2|k|j_ocdy exp(—[klly=y'DF(k.y"). [L(t)~t%?], and the form of the noise to the requirement of

(16) recovering the correct equilibrium state in zero shear, sug-
gests a simple form for the equation of motion for an inter-

We now use this result to evaluate the left side of B¢l).  face in a phase-separating binary fluid in the “viscous hydro-
The leading-order non-linearit§in h) is given by the shear dynamic” regime. This is the regime described by “model
term, so elsewhere in Eq14) we neglect the distinction H” of the Hohenberg-Halperin schenjél]. In this regime,
betweenu andy=u+h. It can be shown that the leading- it is known that coarsening proceeds linearly in tinhéf)
order terms omitted in this approach are of orti¢s,h)?. ~t, corresponding ta= 1 [16]. This suggests that the inter-
Denoting, for brevity, the Fourier transform with respeckto facial relaxation spectrum is given by(k) ~|k| for k—0,
by a subscripk, the Fourier transform of the left side of Eqg. i.e., u=0 in Eq.(2), a result which has been confirmed by
(14) becomes Shinozaki[14]. This in turn suggests that the interfacial noise
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correlator should have the sméllform corresponding tqu (E(r,t) E(r' £ )y=2D 3 p(r) Tap(r—r")dpd(r")
=0, namely(7,(t) 7 (")) =D|k| "8 8(t—t"). St 25
We now show that these expectations, based on general ( ), (29

considerations, are indeed borne out in practice. In the abv'vhereD is the temperature
sence of thermal noise, the equation of motion for the order- . ; : . .
d To determine the interface equation we insert the f@jmn

parameter field takes the form into Eq. (23) to obtain, analogous to Eq7),

P

—+Vv-V¢p=TV?y, (21) , , , , )

Jt ? # () f (U)=J dr’ 9ah(r) Tap(r—r")dpp(r H(V2h) ' (v)
whereu = 6F/ 8¢ is the chemical potential arld is a trans- +V'[f(v)]-[1+(Vh)2]f"(v)}
port coefficient. The velocity of the fluid, assumed incom-
pressible, satisfies the Navier-Stokes equation —&(x,ut+h(xt),1), (26)

whereu=y—h(x,t) andv=y’'—h(x’,t). It is important to
=pV—Vp—o¢Vpu, (22) note that the Oseen tensor in real space is only defined for
d>2. Therefore, all the following equations for mod¢lare
only valid ford>2.
where p and » are the density and viscosity of the fluid,  As in modelsA andB, the leading term for smali comes

respectively, angb is the pressure. The final term in E@2)  from the V2h term in the braces. To linear order, therefore,
contains the feedback between the order parameter and thg can use a “flat interface approximation” in the terms

&V+ \Y
p| o TV Vv

fluid velocity. outside the braces. This means we can wr¥es(r)
The coarsening dynamics of this system is known to ex=f'(u)g,, Vo(r')=f'(v)e,, whereg, is a unit vector in
hibit three regime$16,17. they direction, andr,, becomes the only relevant element of

(i) An early time “diffusive” regime, where the hydrody- the Oseen tensor. Multiplying both sides of E@6) by
namics is irrelevantthe fluid velocity is much smaller than (), and integrating oveu, yields, to leading order i,
the typical interface velocijyand the model reverts to model

B, with coarsening scale(t)~t'3. _

(i) An intermediate time “viscous hydrodynamic” re- 5th(X):0f dx'Tyy(x=x",0)V2h(x') +noise, (27)
gime, where the “inertial terms” on the left side of E®2)
can be neglected, with(t)~t. where the integral is over thal - 1)-dimensional plane of

(iii) A late time “inertial hydrodynamic” regime where the mean interface. Fourier transforming this result using Eq.
the inertial terms dominate the viscous terpV2 and (24) gives

L(t)~t*=,
Here we focus on the viscous hydrodynamic regime, dhy alk|
where we can set the left side of E(@2) to zero. This 7=_ﬁhk+ (), (28)

defines modeH [11,1]. For simplicity, we will ignore the

imposed shear flow in the first instance. The pressure can Rgherek is now a @— 1)-dimensional vector, and we recall
eliminated by using the incompressibility conditioW, v thatd>2. The noise correlator can by evaluated by exploit-

=0, to express the velocity in terms ofVu. Putting the  jng the “flat interface” limit, valid to leading(zeroth order
result into Eq.(21), and adding a noise term, gives the finaljn h. The result is

equation for model H. Since we are interested in the regime

where diffusion is negligible, we drop the terBWV?u to D
obtain <77k(t)n-kr(t’)>=m5k,kr5(t—t’)- (29

ip , , , , Equations(28) and(29) have precisely the forms anticipated
E__f dr’ Gad(N)Tap(r =) dpb(r)u(r’)+&(r.b), earlier on general grounds. We note that, in the absence of
(23)  thermal noise, our approach is very similar to that of Shi-
nozaki[14].

whereu=6F/8¢=V'($)—V?¢, andT,, is the Oseen ten- Finally, we have to impose the shear flow. To do this we

sor, with Fourier transform write v= yye,+u, whereu is the deviation from the mean
shear flow and should vanish far from the interface. Inserting

1 ( kakb) this form forv in both Eq.(21) and Eq.(22), with the left

ab

Tan(k)=—5| Sap— (24)  side of Eq.(22) set to zero appropriate to the viscous regime,
7k we find that the shear term drops out of both the Navier-
Stokes equation and the incompressibility condition. We con-
In Eq. (23), repeated indices are summed over. The form oftlude thatu plays exactly the same role in the sheared case
the noise correlator is dictated by the fluctuation-dissipatioras v plays in the unsheared case, and that the effect of the
theorem imposed shear is to add a teryd, ¢ to the left side of Eq.

k2
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(23), just as in modelsA and B, and therefore a term A. Casep=1
. 2 . .
(i72) vk h7] to the left side of Eq(28), which then be- A value of ¢ less than unity implies anisotropic scaling.
comes Furthermore, in such cases the transverselpadf k domi-
ohe i IK] nates ovek, in the terms involving powers dk|, both in
k4 —yk [h?],=— U—hk+ (). (300  the equation of motion and the noise correlator, which then
a2 4n take the following forms:
[
IIl. RENORMALIZATION GROUP ANALYSIS dihy + §7kx(h2)k= — (VKLY k) ).
The starting point of the RG analysis is Ed). Since the (34)

system is anisotropic, we expect difference scaling properties
in the directions parallel and perpendicular to the shear. Un- (4, (t)_,.(t'))=(D|K, |*~ 1+ Dk?) 8 S(t—t').

der coarse graining, anisotropies will develop in the linear (35)
terms in the equation. Additionally, from the structure of the
nonlinear(sheay term it is clear that terms analytic kf will Note that foru=1 the term\k? coming from\ |k|? can be

be generated in the response function self-energy and thgbsorbed into the’xki term, while the termD|k|#~* be-
renormalized noise. Anticipating this, we generalize 89.  comes a constant. So the case 1 is covered by the general
to (in Fourier space structure of Eqs(34) and (35).

Applying the transformatiori33) to Eq. (34) then yields
rescaled values for the parameters in the equation and the

i
- 2 _ 1+pu 2
dihy+ > Yku(h?)=— (N K[TT 2+ vk hyet 7i(1). noise correlator,

(31
’y’:bX+2717, (36)
The noise correlator takes the form
)\':bzf(lﬂt){)\, (37)
(M) 7 (1)) = (DIK[#~ T+ DykZ) Sy S(t—t).
(32 v=b?2p (38)
We apply a momentum-shell RG in which, for conve- D' = b~ 2x-1-(u- i~ (39

nience, we impose an ultraviolet momentum cutdfin the

x direction only. The RG transformation consists of three ' e 2x—3—(d-2)
steps: (i) eliminating modes with A/b<|k,|<A (hard D,=b*"*¥ Dyt -+, (40)
modes; (i) rescaling the length scales,andx, , the field ) o

variable,h, and the timet; and (i) looking for fixed points Where the ellipses indicate that the parameterand D,
of the equation of motion at which the theory is invariant@cduire perturbative corrections due to the coarse-graining
under(i) and ii). As usual, the elimination of modes will be Step of the RG procedure. By contrast, the parameters,
executed perturbatively near the critical dimensilrof the ~ @nd D acquireno perturbative corrections—equatiof36),
theory. We will show that, is given byd.=(9+ w)/2 for (37), and(39) are exact. The absence of perturbative correc-

u=1, while for x<1 we will see that the situation is less tions to y follows from the invariance of the general equa-
clear. tion of motion, Eg. (1), under the transformatiomm—h

The scale transformation takes the form +hg, X=X+ yhgt, which is the analog for our system of the
usual Galilean invariance of Burgers equatigsse, for ex-
x=bx', x,=b%|, h=bXh', t=b%’. (33 ample, [10]). The absence of corrections to E¢87) and
(39) follows from the fact that the vertex carries a factor
To make further progress it is necessary to know whether k, . As a result, all perturbative contributions to the response
<1 or >1. Since the shear term tends to enhance the infunction self-energy and the noise correlator carry factors of
terfacial coarsening in thg direction, we expect to find K -
<1 whenever the shear is relevant, thoughl is possible Let us first examine the linear theory€0) to identify
for d>d., where the shear ratg is formally an irrelevant the critical dimensiord.. In the linear theory, there are no
variable. We will further argue that>1 is unphysical, and Perturbative corrections and Eq87)—(40) all hold exactly.
will accordingly restrict consideration to<1 in the follow-  From Egs.(37)—(39) we obtain
ing. We will find, however, that the nature of the theory for
d>d. differs according to whethex=1 or u<1. We will, 20=2, ¢ :L :7_M_2d (41)
therefore, consider these two regimes separately. The former 074 S0T T X0OT (1 )
regime includes modela (w=1) andB (u=2), while the
latter includes modeH (x=0). A brief discussion, in the where the subscripts indicate that these are the results of the
present context, of the cage=1 can be found if18]. This  free theory. Inserting these exponents into E£0) gives
special case had also been discussed earlier ifpthysically  D,=b~#1*#)D_, indicating thatD, flows to zero at this
very differen} context of a sandpile modg19]. fixed point.
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< G G z < vertices, open circles represent contractions of the noise,
——=— ++%I (mxn_x)~D, and arrows are bare propagators. The leading
term of the self-energy in the limitk(w)—0 is given by
FIG. 1. Dyson equation for the propagator in terms of the bare K K 2
propagator(single lineg and the self-energghatched circle 3 (k,0)= — yzD fﬂ q>kx(§_qx) G > +q,Q>
Equation(36) determines the relevance, at the trivial fixed K K
point, of the shear ratg. From Eq.(41) we obtainyy+ zg XG|=—q,Q _iJrqL
—1=(9+ u—2d)/[2(1+ u)]. Hence y is relevant ford 2 2
<d., where
¢ = MU ka2|, (48)
de=(9+w)2, u=1. (42 u+5-—d X
Ford<d., we expect a new fixed point to appear at which B B
v, \, andD are all nonzero. Equation(86), (37), and(39) U= S4-2 d+pu—3 (6+2'“ d)
give the corresponding exponents exactly 8(u+1)(2m)42 pmtl ptl
Z_ 3(1+,U/) - 3 B 3_M_d X ,yZD)\(3—d—p,)/(;/,+l)Vx—(6+2,u—d)/(;L+l) ) (49)
6+2u—d’ 6+2u—d X 6+2u—d

(43) In the above expressioh(u) is the gamma function and
Sq_» is the surface area of the unit spheredin 2 dimen-
We recall that in order for our calculation to be consistent wesjons. The notation(@,q~) means that we integrate with the
must have/<1, such thatk|~|k, |. From relationg41) and  measuredQdgq,dq, /(27)9"%, within the outer shellhe™'
(43) we see that this condition requirgs=1, consistent with  <|q,|<A. Due to the anisotropic nature of the nonlinearity,
the case we are currently analyzing. there is no need to introduce a cutoff fgr . Furthermore,
Exponents(43) are correct only if the fixed point values we have takem =1 without loss of generality.

of the parameters, N, and D are all nonzero, otherwise Putting together Eqg47), (48), and (49) and using the
their scaling dimensions cannot be set equal to zero. Tgcaling dimensions of the parameters\, andD, we finally
check this fact we perform a one-loop RG calculation toobtain the RG flow equation for the effective coupling con-
compute the perturbative correctionsitp. In general, inte-  stantU
gration over the hard modes gives the following equation for

the renormalized propagat®=(k,) (see Fig. 1 dU 9+u—2d 2(6+2u—d)? ) (
— = — u-. 50)
G=(k,w)=G(k,0)+G(k,0)S(k,0)G=(k,w), (44) di wu+l (p+1)(p+5-d)
where the bare propagator is given by Consistent with our previous determination of the critical
. 5 dimension, we see that the linear term in the flow equation
G(k,) '=—iw+ vk + Nk, [F7#, (45  changes sign fod=d.=(9+ x)/2. Moreover, the quadratic

term is negative, implying that for arg<<d, there is a non-
and the self-energi (k,w) must be calculated perturba- ;erg stable fixed point)*=0(e), with e=d,—d. The RG

tively in . From the relation perturbative expansion is thus well behaved and the fixed
< -1- -1_ point values ofy, \, andD for d<d, are finite. The expo-

G (kw)=Glk.w) (k) (46) nents(43) are therefore correct. On the other hand, dor

we clearly see that the perturbative correctionsfocome > e the only stable fixed point i8)*=0, corresponding to

from terms of orderkf in 3(k,). Settingb=¢', with | an irrelevant nonlinearity and thus giving the “free” expo-

infinitesimal, Eqs(38) and (46) yield nents of Eq.(41).

1 B. Casep<1

2
k—0 Py X

dv, .
—=vx{(z—2)—“m 3(k,0) |. (47)

dl

For u<1, Eq.(41) gives{>1 for the free theory, violat-
ing the assumptiod<<1 under which Eq(41) was derived.
The standard one-loop diagram for the self-energy is showithis suggests we look for a solution witt 1. In this case,
in Fig. 2 (see, for example[10]). Full circles represeny  k, will dominate over(or be the same order )k, in |k|.
The recursion relations fox, v,, andD become

+k/2 -(q+k/2
% ! .7I_ S ﬁq ) N =z (LFm), (51)
k koo ka2 k v =b 2yt (52)
FIG. 2. One-loop contribution to the self-energy. The internal
lines also carry frequency labelsot shown. D' =b? 2x"1-(k=1)=(d=2)p, (53
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instead of Eqs.(37)—(39). At the fixed point of the free vi=b" 2yt ..., (58

theory (y=0), Eq. (51) gives z=1+u, so that Eq.(52)

becomesv,=b*"1v,, ie., v, is driven to zero, sinces D’ =p? 2X~ 4D (59)

<1. The theory withv,=0=y is completely isotropic, so '

{=1. Insertingz=1+u and{=1 in Eq. (53) gives y=(3 ' pz-2y-3

—d)/2. Summarizing, the exponents of the free theory for Dy=b Dyt - (60)

<

u<lare Equations(56), (57), and (59) are exact, and, therefore, it

Zo=14+u, (o=1, xo=(3—d)/2, (54 seems that we have three equations for just two unknown
exponentsy andz. This apparent paradox is solved if one of
which coincides with Eq(41) in the limit x—1. the parameters is zero at the fixed point, since in this case the

The relevance of is again determined by E¢36). From  corresponding equation is trivially satisfied without setting
Eqg. (54), the combinationy+z—1 is given, for the free the scaling dimension to zero. The shear rates certainly
theory, by xo+2zo—1=(3+2u—d)/2. Hence, foru<1, y  relevant, sincel=2 is below the critical dimension. If we

is relevant below the new critical dimension assumeéD — 0, using Eqs(56) and(57) we gety+z=1 and
z=u+1, giving x=— w. This would imply a positive scal-
di=3+2u, w<l. (55) ing dimension foD, which is inconsistent witld — 0. Thus,

we must assuma—0, and find from Eqs(56) and (59),

Note thatd/, differs from the critical dimensiod, found for ~ y+z=1 andz—2y=u at the fixed point, giving
the caseu=1 in Eq. (42), namely,d.<d.. On the other
hand they coincide in the limjt—1. z=(2+w)/3, x=(1—w)/3 (61)

For d<d(, from Eq. (43) one again obtaing<1 and,
therefore, it is tempting to conclude that these are the corre¢h d=2. Inserting these results into Eq457) gives \’
exponents even for the<1 case, provided that<d/.As a =b~(1+2158) 5o\ flows to zero ind=2, as assumed, for
further consistency check, one may note that these exponeradl w>—1/2.
reproduce the ones of the free theory given by &4) for

d—d/ . Unfortunately, the situation.is not as s.imple as this. IV. STABILITY OF THE DOMAINS
If we perform a one-loop perturbative expansion beldy
we formally get the same flow Eq50), since{<1 in this The calculations of the previous sections are important to

regime. However, as we have seen, the fixed point of thi@ssess the stability of the highly stretched domains in a
equation is of ordere=d.—d, which is not small ford  coarsening system under shear. We recall that we are consid-
~d_ . In other words, because of the gap betwagandd,, ering a shear velocity profile with flow in thedirection and

the one-loop expansion in the form stated above is not unddiradient in they direction. We denote by, all the directions
control in the regimex<1. We were not able to find a per- prthogonal to bothx andy.for d>3..The effect of the shear
turbatively consistent solution in this phase. As a conselS to stretch the coarsening domains such that there are two
quence, we can only conjecture that the exponents we havlifferent length scalek along thex direction andL, in all
found for u<1 are correct, since they lack a substantialthe orthogonal directions. The transverse size of the domains
perturbative support. L, is in general much smaller than longitudinal dng2,3].
Finally, let us note that although one can formally find a\What we have to check is whether the sixeof the height

solution with ¢>1, all the terms involvingc, drop out at fluctuation is larger thark, , inducing a breaking of the
this fixed point, and the equation becomes essentially ondomains, or whetheA<L, , meaning that the domains are

dimensional, which is unphysical. We therefore reject thisStable under thermal fluctuations. _ _
possibility. In the long-time limit, the main orientation of the domains

will be almost completely parallel to the shear flow, and,
therefore, height fluctuations in the surface of the domains
grow in a direction orthogonal ta In d= 2, this implies that
Some of the results derived above only hold tb»2.  the only relevant fluctuations are in tigthat ish, direction.
This is because the idea tHat dominate, in |k| is clearly  On the other hand, fat=3, there are also fluctuations grow-
inapplicable ind=2, since there is onlk,. Similarly, the ing in thex, direction, which arenot described by Eq(1).
exponent{ can no longer be defined, so there are just twoThese two cases will, therefore, be treated separately.
independent exponentsand y. The equation of motion and
noise correlator are given by Eq84) and(35), respectively,

C. Cased=2

but with |k| replaced bylk,|. We recall that modeH (u A. Cased=2
=0) is ill defined ford=2. In two dimensions the height fluctuations of the surface
The RG recursion relations far=2 become are given by the fluctuations of the field Thus, as a con-
sequence of the scaling relatidr(x,t)=b*h’(x’,t") [see
y' =tz ly, (56)  Eq.(33)], the height fluctuatior grows as
N =bF A (57) A~h~tX?F(t/Lf), (62)
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where the scaling functiofr goes to a constant for small fluctuations. Fortunately, this will turn out to be a linear

argument andF(s)~s~ X% for s—o. This means that if¥?  equation, such that no perturbative RG analysis is necessary.

<L the surface grows ik ~t¥'2, whereas ift*?> Ly, we In order to describe surface fluctuations which grow in the

haveA~L[*. We can incorporate both limits in the form X, direction we have to introduce a new height fidid
which satisfies the equation

A~min(t¥'2 L) (63)
dhy +yydh, =Lh, + 5 (66)
In two dimensions we need only consider mod@l , T
~1) andB (u=2) y qu to be compared with Ed1). The operatol is still given at
' low momenta byZ~ X\ |k|1*#. Equation(66) is linear and,
1. Model A therefore, we can work out the exponents exactly by means

. iy _ L of simple scaling. By setting
In this case the critical dimension &,=5, so ford=2

the shear is relevant. From the former sections we have x=bx’, y=bfy’, h =bXh], t=b%’, (67)
=0 andz=1. Equation(63) therefore implies that, whatever

valueL | takes, the height fluctuatiah will be of order unity. ~ and imposing scale invariance of E@6), we obtain(with
In [6] it has been shown that for modél the transverse the usual hypothesis<1),

domain size isL, ~O(1). This is an analytical result ob- b rzm1tg

tained in the context of the Ohta-Jasnow-Kawasaki approxi- y'=b Y (68)

mation. This gives N =bZ kD), (69

A~L, (d=2), model A. (64)
D'=b? 2x~¢{r"1p, (70)
We conclude that modéA in two dimensions is a marginal _ . . .
case, and we cannot exclude the possibility that thermal flucand setting to zero the scaling dimensions of all three param-
tuations may in this case break the domains giving rise to &ters gives

stationary state.
y w1 1 w1
7=——

2. Model B w2 a2 X oy (71)

For modelB we haved,=11/5>2, and the exponents are Note that is smaller than one, consistent with our assump-

x=—1/3, z=4/3. Also in this case, therefore, we do notjo, \ve see thay is negative for all the three interesting
need_ to kno_vv_the coarsening exponent kg, S|_nce_from values of u (©=0,1,2), meaning that height fluctuations
relatlon(63) it is clear that a negative value qf implies a along thex, direction are always finited, ~O(1).
saturation ofA to a constant value We have to assess now the physical importanca pin
A~O(1) (d=2), model B, 65) the context of domain coarsening. From the usual scaling
relations we get

This result opens up two different scenarios, according to the
the growth law for_ | . If L, ~t'3, as argued ifi4] by means

of numerical experiments and RG arguments, tedl, |, general, evaluating the magnitude/of from this relation
and the domains must be stable against thermal fluctuat|on% quite subtle, as we need to compare the interfacial coars-
If, however, L, ~O(1), assuggested by some recent nu- gning and equilibrium regimes in both the parallel and per-

merical simulation$8], then, as in modeA, we cannot ex-  hengicular directions. However, as we discuss below, in all
clude the pQSS|b|I|ty that a breaking of the domains b31’/3ther'cases of physical interest we haye=0 implying that the
mal fluctuations occurs. Our result shows that a~t interfacial fluctuations saturate.

growth law and a thermally induced stretching and breaking
mechanism are not compatible. Conversely, if a thermally 1. Model A
induced breaking of the domains is clearly observed in nu-

; ; ; ; In the caseu=1 andd=3, Eq.(43), with u=1, gives
merical experiments, this strongly suggests that the relation X
L, ~0(1) Eolds. gly sudg x=—1/5, and thereford,~O(1). FormodelA it was been

found in[6] thatL, ~t*?  giving

Ay~h~t2E/LE LY. (72)

B. Cased=3 Ay<L, (d=3), model A. (73
In three dimensions the situation is more complicated. _ )
First, as ind=2, there are height fluctuations in tielirec- In model A, domains are, therefore, stable against thermal

tion, A,~h, described by Eq(1). Secondly, there are fluc- fluctuations.

tuations in thex, direction A, , which can also become
larger thanL, and that are not described by E4). Thus,
before assessing the stability of the domains der3 we In this case also the exponeptis negative: Eq(43) with
must formulate an equation for the description of these lattep =2 givesy= —2/7, andz=9/7, yielding

2. Model B

016104-8



INTERFACE FLUCTUATIONS, BURGERS EQUATIONS .. PHYSICAL REVIEW E 65 016104

A,~O(1) (d=3), model B. (74) the form(2). The models differ principally in the numerical
value of the exponengk, which is given by 1, 2, and 0O for
Even though no analytical results or numerical simulationgnodelsA, B, andH, respectively.

studies are available at the present for mdgléh d=3, we The interface equations have the form of anisotropic noisy
certainly expect, to grow with time in this case and, there- Burgers equations. In each case, exact renormalization group
fore, the domains to be stable. (RG) arguments determine the exponerts/, and y that
characterize the coarsening, anisotropy, and roughening of
3. Model H the interface, respectively. In all casgs=0 implying that
For u<1, as we have seen, we have a different criticalthe thermally induced interfacial width approaches a finite
dimension given by Eq(55), which is exactly three fope  limit at infinite time. A consequence of this result is that the

=0. This implies, using either Eq54) or Eq. (43), thaty ~ domain structure of a coarsening system under shear is stable

The general framework revealed by the exact RG rela-

Ay~0O(1) (d=3), model H. (75) tions was supported by explicit one-loop calculations for
=1. For u<1, however, no one-loop equations consistent
V. SUMMARY with the expected critical dimensiod,=3+2u could be

derived. Whether this is just a technical difficulty, or signals

Interfacial fluctuations have been investigated in Systemgome important physica| difference between the regimes
subjected to an external shear flow. Interfacial dynamics ap=1 andu <1, merits further investigation.

propriate to systems with nonconserved scalar order param-
eter(modelA), conserved scalar order parametandelB),

and conserved scalar order parameter coupled to hydrody-
namic flow (modelH) have been studied. In each case the A.C. thanks Antti Kupiainen for a useful discussion. This
interfacial dynamics is described by a similar equation of thework was supported by EPSRC Grant No. GR/L97698
form (1), whereh is the local height of the interface and in (A.J.B. and A.C) and by Fundgao para a Ciacia e a Tec-
which the eigenvalue spectrum of the linear operatdras  nologia Grant No. BD/21760/96R.D.M.T.).
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