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Interface fluctuations, Burgers equations, and coarsening under shear
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We consider the interplay of thermal fluctuations and shear on the surface of the domains in various systems
coarsening under an imposed shear flow. These include systems with nonconserved and conserved dynamics,
and a conserved order parameter advected by a fluid whose velocity field satisfies the Navier-Stokes equation.
In each case the equation of motion for the interface height reduces to an anisotropic Burgers equation. The
scaling exponents that describe the growth and coarsening of the interface are calculated exactly in any
dimension in the case of conserved and nonconserved dynamics. For a fluid-advected conserved order param-
eter we determine the exponents, but we are unable to build a consistent perturbative expansion to support their
validity.
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I. INTRODUCTION

This paper deals with the influence of shear on interfa
fluctuations in phase-ordering or phase-separating syst
The primary motivation is the need to understand the in
ence of thermal fluctuations on coarsening under shear. T
mal fluctuations are not normally thought to be important
coarsening systems, as the dynamics is controlled b
‘‘strong coupling,’’ i.e., zero temperature, fixed point an
temperature is formally an irrelevant perturbation@1#. Under
an externally imposed shear flow, however, the growing
mains become stretched in the flow direction@2–8# and there
is evidence, especially in two spatial dimensions, that gro
in the transverse direction is strongly suppressed@5–8#. This
raises the possibility that thermal roughening of the interf
might destroy the coarsening state. On the other hand,
thermal roughening is itself suppressed by the shear flow
the question of the survival of the coarsening regime to
times rests on a delicate balance between these two effe

A second motivation for this study emerges from t
mathematical description of the interfacial fluctuation
which takes the form an anisotropic Burgers equation@9,10#.
The structure of the equation, and the form of the noise c
relator, are such that, in a renormalization group~RG! analy-
sis, some parameters of the theory are not perturbati
renormalized. As a result, certain combinations of scal
exponents can be determined exactly. Remarkably, the n
ber of such combinations is in every case equal to the n
ber of unknown exponents, so that all scaling exponents
be determined exactly for any spatial dimensionalityd.

The structure of the interface equation is very simple
h(x,t) is the interfacial height relative to the mean heig
wherex is a (d21)-dimensional vector specifying positio
in the plane parallel to the~mean! interface, andt is the time,
the equation takes the simple form

] th1gh]xh5Lh1h~x,t !, ~1!

whereg is the shear rate, and we have taken the shear
to be in thex direction. The linear operatorL is diagonal in
Fourier space, and its eigenvaluesl(k) have the limiting
small-k form
1063-651X/2001/65~1!/016104~9!/$20.00 65 0161
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l~k!;uku11m, uku→0. ~2!

In Eq. ~1! we have retained only the leading-order nonline
ity, which is associated with the shear. In this limit, the no
correlator has the same form as in the zero-shear c
namely ~in Fourier space! ^h(k,t)h(k,t8)&;ukum21d(k
1k8)d(t2t8), where this particular form follows, via the
fluctuation-dissipation theorem, from the zero-shear stati
ary state,P@h(x)#}exp@2const*ddx(¹h)2#. The parameter
m specifies the particular dynamical model under consid
ation. Particular cases of physical relevance arem51 ~a non-
conserved order parameter, or ‘‘modelA’’ in the classifica-
tion of Hohenberg and Halperin@11#!, m52 ~a conserved
order parameter obeying the Cahn-Hilliard equation,
‘‘model B’’ !, and m50 ~a conserved order paramet
coupled to hydrodynamic flow in the viscous regime,
‘‘model H ’’ !.

The derivation and RG analysis of Eq.~1! will form the
main part of this work. Since the system is anisotropic due
the shear, we writex5(x,x'), where x is the coordinate
along the flow direction, andx' is a (d22)-dimensional
vector perpendicular to the flow. There are, in general, th
scaling exponents,x, z, andz, defined by the condition tha
the simultaneous scale transformationsx→bx, x'→bzx' ,
h→bxh, andt→bzt leave the interfacial dynamics scale in
variant. All three will be determined exactly for all physic
values ofm and for alld.

The remainder of the paper will consist of a more detai
discussion of the physical motivation for these calculatio
and the analysis and interpretation of the results. The in
face equations are derived in Sec. II for modelsA, B, andH.
Section III contains the RG analysis, while in Sec. IV w
discuss the implications of our results for coarsening syste
under shear. Section V concludes with a summary of
results.

II. THE INTERFACE EQUATION

In each case we will start from the relevant Ginzbur
Landau equation for the order parameterf(r ,t), and derive
the interface equation by projecting the full equation of m
tion onto the interface. We assume a coarse-grained f
©2001 The American Physical Society04-1
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energy functional of the Ginzburg-Landau form

F@f#5E ddr F1

2
~¹f!21V~f!G , ~3!

where V(f) is a symmetric double-well potential wit
minima atf561, representing the two equilibrium phase

For pedagogical purposes we begin with the simplest c
of the time-dependent Ginzburg-Landau equation~or ‘‘model
A’’ ! that describes phase-ordering in a system with a n
conserved scalar order parameter, i.e., Ising-like syst
such as a twisted-nematic liquid crystal.

A. Model A

We will consider a uniform shear flow in thex direction,
with the velocity gradient in they direction,v5gyex, where
g is the shear strength andex is the unit vector in thex
direction. The dynamics of the system are governed by
Langevin equation

]f

]t
1gy

]f

]x
52

dF

df
1j~r ,t !5¹2f2V8~f!1j~r ,t !,

~4!

where the second term on the left-hand side is justv•¹f,
and represents the advection of the order parameter by
shear flow. In Eq.~4!, a kinetic coefficient has been absorb
into the time scale,V8(f)[dV/df, andj(r ,t) is Gaussian
white noise with mean zero and correlator

^j~r ,t !j~r 8,t8!&52Dd~r2r 8!d~ t2t8!, ~5!

where the noise strengthD is proportional to the tempera
ture.

During the process of phase separation the effect of
shear is to stretch the domains in the direction of the flo
making them relatively thin in the transverse direction. W
are, therefore, interested in how thermal fluctuations af
the domain walls parallel to the flow direction. Indeed,
these fluctuations grow too large, they can break the dom
and disrupt the coarsening process.

To this end we construct an equation for an interfa
parallel to the flow direction and normal to the velocity gr
dient, separating the two equilibrium phases of the order
rameterf. We are interested in the limit where the interfa
is almost planar, such that (¹h)2 is typically small, whereh
is the interfacial height relative to the mean. Therefore,
are going to systematically neglect terms that are smalle
powers of (¹h)2 than the terms we retain. In this limit, th
order-parameter profile is well represented by the sim
form

f~r ,t !5 f „y2h~x,t !…, ~6!

where we have writtenr5(x,y), and wheref„x,h(x,t),t…
50. Equation~6! simply means that the contour lines off
close to the interface are almost normal to they direction,
which of course is equivalent to saying that (¹h)2 is small.
The functionf (u) is essentially a step function, with a widt
given by the interfacial width,j0. Its derivative, f 8(u), is
01610
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therefore a smearedd function, which peaks on the interfac
and has widthj0. It will be used below as a projector ont
the interface. Equation~6! will be used also in the context o
modelsB andH.

Substituting Eq.~6! into Eq. ~4! gives, withu5y2h,

~] th! f 8~u!52g~u1h!~]xh! f 8~u!2@11~¹h!2# f 9~u!

1~¹2h! f 8~u!2V8~ f !1j„x,u1h~x,t !,t….

~7!

Finally we multiply through byf 8(u) and integrate overu.
Formally we take the integral from2` to `, but in practice
the integral is concentrated in the neighborhood ofu50.
Since f 9(u) f 8(u) and V8( f ) f 8(u) are perfect derivatives
these terms drop out. Also the term involvingu@ f 8(u)#2 van-
ishes by symmetry under the integral. The final result, the
fore, is

] th1gh]xh5¹2h1h~x,t !. ~8!

The noise term is given by

h~x,t !52~1/s!E du f8~u!j„x,u1h~x,t !,t…, ~9!

where s5*du@ f 8(u)#2 is the surface tension. Clearly th
mean ofh is zero, while use of Eq.~5! gives its correlator as

^h~x,t !h~x8,t8!&5~2D/s!d~x2x8!d~ t2t8!. ~10!

In the zero-shear limit,g50, Eq. ~8! reduces to the
Edwards-Wilkinson model@12#, and has a simple interpreta
tion. The interfacial free-energy functional, to lowest order
(¹h)2, is Fint5(1/2)*dd21x(¹h)2. The dynamics~8! corre-
sponds to the Langevin equation] th52dFint /dh1h. The
noise strength 2D/s in Eq. ~10! guarantees the correct sta
tionary distribution,P@h#}exp(2sF@h#/D).

Before moving on to modelB, it is worth noting that for
the case of zero shear and zero noise the equation reduc
simple relaxation. In Fourier space, one has] t h̃(k,t)
52k2h̃(k,t), i.e., fluctuations on a length scaleL;1/k relax
on a time scalet(L);L2. For a coarsening system contai
ing many interfaces, this relation gives the time scale,L2 for
a feature at scaleL to relax away, and suggests the relati
L(t);t1/2 for the coarsening length scale, or ‘‘domain scal
in a phase-ordering system. This approach to determin
coarsening exponents from interfacial relaxation rates
been used before@13,14#, and the predictions agree with th
results obtained from other methods@1#. Indeed, the result is
more general@15#. In any system where coarsening procee
by relaxation of extended defect structures~domain walls,
vortex lines, etc.! the dynamical exponentz, in the relation
L(t);t1/z for the coarsening dynamics, is the same as t
obtained from the relaxation rate,l(k);ukuz, of a single
defect with a sinusoidal modulation at wave vectork. The
same general structure will be apparent in the study of m
els B andH.
4-2



ur
o

tim

p
th

e-

-

r

-

.

ss

oise.
ns

ing

q.
in

q.

as

he

of
ug-
er-
ro-
el

-

y
se

INTERFACE FLUCTUATIONS, BURGERS EQUATIONS, . . . PHYSICAL REVIEW E 65 016104
B. Model B

For conserved dynamics, the time-dependent Ginzb
Landau equation is replaced by the Cahn-Hilliard-Co
equation~i.e., the noisy Cahn-Hilliard equation! which, in
the presence of a uniform shear flow, reads

]f

]t
1gy

]f

]x
5¹2

dF

df
1j~r ,t !

52¹2@¹2f2V8~f!#1j~r ,t !, ~11!

where a transport coefficient has been absorbed into the
scale. The noise correlator is

^j~r ,t !j~r 8,t8!&522D“

2d~r2r 8!d~ t2t8!. ~12!

As a prelude to further analysis it is convenient to first o
erate on both sides of the equation with the inverse of
Laplacian operator~whose meaning will become clear b
low!. Making the same long-wavelength approximation~6!
as in the treatment of modelA gives

~2¹2!21@] th1g~u1h!]xh# f 8~u!

52@11~¹h!2# f 9~u!1~¹2h! f 8~u!2V8~ f !

1~2¹2!21j„x,u1h~x,t !,t…. ~13!

Multiplying by f 8(u) and integrating overu, as before, gives

E du f8~u!~2¹2!21f 8~u!@] th1g~u1h!]xh#

5s¹2h1h̄~x,t !, ~14!

where the noise is given by

h̄~x,t !52E du f8~u!~2¹2!21j„x,u1h~x,t !,t….

~15!

The meaning of the operator (2¹2)21 is as follows. In
Fourier space one has (2¹2)21→(k21q2)21, where (k,q)
is the vector conjugate to (x,y). Defining, for a general func
tion F, G(x,y)5(2¹2)21F(x,y), its Fourier transform, in
the (d21)-dimensional subspace spanned byx, is given by

G̃~k,y!5
1

2uku E2`

`

dy8 exp~2ukuuy2y8u!F̃~k,y8!.

~16!

We now use this result to evaluate the left side of Eq.~14!.
The leading-order non-linearity~in h) is given by the shea
term, so elsewhere in Eq.~14! we neglect the distinction
betweenu and y5u1h. It can be shown that the leading
order terms omitted in this approach are of orderh(]xh)2.
Denoting, for brevity, the Fourier transform with respect tox
by a subscriptk, the Fourier transform of the left side of Eq
~14! becomes
01610
g-
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e
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2uku E duE dv exp~2ukuuu2vu! f 8~u! f 8~v !

3H ] thk1 igkxS v1
1

2
@h2#kD J . ~17!

Recalling thatf 8(u) acts as ad function atu50 ~of strength
2, which is the discontinuity of the order parameter acro
the interface!, Eq. ~14! simplifies to

] thk1
i

2
gkx@h2#k52

s

2
uku3hk1

1

2
ukuh̄k~ t !. ~18!

Consider once more the case of zero shear and zero n
Then Eq.~18! represents simple relaxation, with fluctuatio
on length scaleL;1/k relaxing at a ratek3, i.e., askz with
z53. This is again consistent with the known coarsen
growth law,L(t);t1/3, for modelB @1#.

The form of the noise correlator can be extracted from E
~15!. Using the same simplifications, as before, yields,
Fourier space,

^h̄k~ t !h̄2k8~ t8!&5
4D

uku
dk,k8d~ t2t8!. ~19!

Equation~18! has, in real space, precisely the form of E
~1!, where the operatorL has the small-uku spectruml(k)
;uku3, i.e., it has the form~2! with m52. Defining hk(t)
5 1

2 ukuh̄k(t), one recovers Eq.~1! exactly, with noise cor-
relator

^hk~ t !h2k8~ t8!&5Dukudk,k8d~ t2t8!. ~20!

For modelA, Eq. ~8! also has the form~1!, but with m
51 in Eq. ~2!. This suggests that both models be viewed
members of a more general class, defined by Eqs.~1! and~2!
with m general. As discussed in the Introduction, t
requirement that the equilibrium distributionP@h#
}exp@2s/2(kk

2hkh2k# be recovered forg50 forces the
noise correlator to have the form̂ hk(t)h2k8(t8)&
;ukum21dk,k8d(t2t8). Our results~10! and~20!, for models
A andB, respectively, satisfy this requirement.

C. Model H

The general results relating the form of the spectrum~2!
of the operatorL in Eq. ~1! to the exponentz for coarsening
@L(t);t1/z#, and the form of the noise to the requirement
recovering the correct equilibrium state in zero shear, s
gests a simple form for the equation of motion for an int
face in a phase-separating binary fluid in the ‘‘viscous hyd
dynamic’’ regime. This is the regime described by ‘‘mod
H ’’ of the Hohenberg-Halperin scheme@11#. In this regime,
it is known that coarsening proceeds linearly in time,L(t)
;t, corresponding toz51 @16#. This suggests that the inter
facial relaxation spectrum is given byl(k);uku for k→0,
i.e., m50 in Eq. ~2!, a result which has been confirmed b
Shinozaki@14#. This in turn suggests that the interfacial noi
4-3
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correlator should have the small-k form corresponding tom
50, namely^hk(t)h2k8(t8)&5Duku21dk,k8d(t2t8).

We now show that these expectations, based on gen
considerations, are indeed borne out in practice. In the
sence of thermal noise, the equation of motion for the ord
parameter field takes the form

]f

]t
1v•¹f5G¹2m, ~21!

wherem5dF/df is the chemical potential andG is a trans-
port coefficient. The velocityv of the fluid, assumed incom
pressible, satisfies the Navier-Stokes equation

rF]v

]t
1~v•¹!vG5h¹2v2¹p2f¹m, ~22!

where r and h are the density and viscosity of the fluid
respectively, andp is the pressure. The final term in Eq.~22!
contains the feedback between the order parameter and
fluid velocity.

The coarsening dynamics of this system is known to
hibit three regimes@16,17#.

~i! An early time ‘‘diffusive’’ regime, where the hydrody
namics is irrelevant~the fluid velocity is much smaller tha
the typical interface velocity! and the model reverts to mode
B, with coarsening scaleL(t);t1/3.

~ii ! An intermediate time ‘‘viscous hydrodynamic’’ re
gime, where the ‘‘inertial terms’’ on the left side of Eq.~22!
can be neglected, withL(t);t.

~iii ! A late time ‘‘inertial hydrodynamic’’ regime where
the inertial terms dominate the viscous termh¹2v and
L(t);t2/3.

Here we focus on the viscous hydrodynamic regim
where we can set the left side of Eq.~22! to zero. This
defines modelH @11,1#. For simplicity, we will ignore the
imposed shear flow in the first instance. The pressure ca
eliminated by using the incompressibility condition,¹•v
50, to express the velocity in terms off¹m. Putting the
result into Eq.~21!, and adding a noise term, gives the fin
equation for model H. Since we are interested in the reg
where diffusion is negligible, we drop the termG¹2m to
obtain

]f

]t
52E dr 8]af~r !Tab~r2r 8!]bf~r 8!m~r 8!1j~r ,t !,

~23!

wherem5dF/df5V8(f)2¹2f, andTab is the Oseen ten
sor, with Fourier transform

Tab~k!5
1

hk2 S dab2
kakb

k2 D . ~24!

In Eq. ~23!, repeated indices are summed over. The form
the noise correlator is dictated by the fluctuation-dissipat
theorem
01610
ral
b-
r-

the

-

,

be

l
e

f
n

^j~r ,t !j~r 8,t8!&52D]af~r !Tab~r2r 8!]bf~r 8!

3d~ t2t8!, ~25!

whereD is the temperature.
To determine the interface equation we insert the form~6!

into Eq. ~23! to obtain, analogous to Eq.~7!,

~] th! f 8~u!5E dr 8]af~r !Tab~r2r 8!]bf~r 8!$~¹2h! f 8~v !

1V8@ f ~v !#2@11~¹h!2# f 9~v !%

2j„x,u1h~x,t !,t…, ~26!

whereu5y2h(x,t) and v5y82h(x8,t). It is important to
note that the Oseen tensor in real space is only defined
d.2. Therefore, all the following equations for modelH are
only valid for d.2.

As in modelsA andB, the leading term for smallh comes
from the¹2h term in the braces. To linear order, therefor
we can use a ‘‘flat interface approximation’’ in the term
outside the braces. This means we can write¹f(r …
5 f 8(u)ey , ¹f(r 8)5 f 8(v)ey , whereey is a unit vector in
they direction, andTyy becomes the only relevant element
the Oseen tensor. Multiplying both sides of Eq.~26! by
f 8(u), and integrating overu, yields, to leading order inh,

] th~x!5sE dx8Tyy~x2x8,0!¹2h~x8!1noise, ~27!

where the integral is over the (d21)-dimensional plane of
the mean interface. Fourier transforming this result using
~24! gives

]hk

]t
52

suku
4h

hk1hk~ t !, ~28!

wherek is now a (d21)-dimensional vector, and we reca
that d.2. The noise correlator can by evaluated by explo
ing the ‘‘flat interface’’ limit, valid to leading~zeroth! order
in h. The result is

^hk~ t !h2k8~ t8!&5
D

2huku
dk,k8d~ t2t8!. ~29!

Equations~28! and~29! have precisely the forms anticipate
earlier on general grounds. We note that, in the absenc
thermal noise, our approach is very similar to that of S
nozaki @14#.

Finally, we have to impose the shear flow. To do this
write v5gyex1u, whereu is the deviation from the mean
shear flow and should vanish far from the interface. Insert
this form for v in both Eq.~21! and Eq.~22!, with the left
side of Eq.~22! set to zero appropriate to the viscous regim
we find that the shear term drops out of both the Navi
Stokes equation and the incompressibility condition. We c
clude thatu plays exactly the same role in the sheared c
as v plays in the unsheared case, and that the effect of
imposed shear is to add a termgy]xf to the left side of Eq.
4-4
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~23!, just as in modelsA and B, and therefore a term
( i /2)gkx@h2#k to the left side of Eq.~28!, which then be-
comes

]hk

]t
1

i

2
gkx@h2#k52

suku
4h

hk1hk~ t !. ~30!

III. RENORMALIZATION GROUP ANALYSIS

The starting point of the RG analysis is Eq.~1!. Since the
system is anisotropic, we expect difference scaling proper
in the directions parallel and perpendicular to the shear.
der coarse graining, anisotropies will develop in the line
terms in the equation. Additionally, from the structure of t
nonlinear~shear! term it is clear that terms analytic inkx

2 will
be generated in the response function self-energy and
renormalized noise. Anticipating this, we generalize Eq.~1!
to ~in Fourier space!

] thk1
i

2
gkx~h2!k52~luku11m1nxkx

2!hk1hk~ t !.

~31!

The noise correlator takes the form

^hk~ t !h2k8~ t8!&5~Dukum211Dxkx
2!dk,k8d~ t2t8!.

~32!

We apply a momentum-shell RG in which, for conv
nience, we impose an ultraviolet momentum cutoffL in the
x direction only. The RG transformation consists of thr
steps: ~i! eliminating modes withL/b,ukxu,L ~hard
modes!; ~ii ! rescaling the length scales,x and x' , the field
variable,h, and the timet; and ~iii ! looking for fixed points
of the equation of motion at which the theory is invaria
under~i! and~ii !. As usual, the elimination of modes will b
executed perturbatively near the critical dimensiondc of the
theory. We will show thatdc is given bydc5(91m)/2 for
m>1, while for m,1 we will see that the situation is les
clear.

The scale transformation takes the form

x5bx8, x'5bzx'8 , h5bxh8, t5bzt8. ~33!

To make further progress it is necessary to know whethez
<1 or z.1. Since the shear term tends to enhance the
terfacial coarsening in thex direction, we expect to findz
,1 whenever the shear is relevant, thoughz51 is possible
for d.dc , where the shear rateg is formally an irrelevant
variable. We will further argue thatz.1 is unphysical, and
will accordingly restrict consideration toz<1 in the follow-
ing. We will find, however, that the nature of the theory f
d.dc differs according to whetherm>1 or m,1. We will,
therefore, consider these two regimes separately. The fo
regime includes modelsA (m51) andB (m52), while the
latter includes modelH (m50). A brief discussion, in the
present context, of the casem51 can be found in@18#. This
special case had also been discussed earlier in the~physically
very different! context of a sandpile model@19#.
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A. CaseµÐ1

A value of z less than unity implies anisotropic scalin
Furthermore, in such cases the transverse partk' of k domi-
nates overkx in the terms involving powers ofuku, both in
the equation of motion and the noise correlator, which th
take the following forms:

] thk1
i

2
gkx~h2!k52~luk'u11m1nxkx

2!hk1hk~ t !.

~34!

^hk~ t !h2k8~ t8!&5~Duk'um211Dxkx
2!dk,k8d~ t2t8!.

~35!

Note that form51 the termlkx
2 coming fromluku2 can be

absorbed into thenxkx
2 term, while the termDukum21 be-

comes a constant. So the casem51 is covered by the genera
structure of Eqs.~34! and ~35!.

Applying the transformation~33! to Eq. ~34! then yields
rescaled values for the parameters in the equation and
noise correlator,

g85bx1z21g, ~36!

l85bz2(11m)zl, ~37!

nx85bz22nx1•••, ~38!

D85bz22x212(m21)z2(d22)zD, ~39!

Dx85bz22x232(d22)zDx1•••, ~40!

where the ellipses indicate that the parametersn and Dx
acquire perturbative corrections due to the coarse-grain
step of the RG procedure. By contrast, the parametersg, l,
and D acquireno perturbative corrections—equations~36!,
~37!, and~39! are exact. The absence of perturbative corr
tions to g follows from the invariance of the general equ
tion of motion, Eq. ~1!, under the transformationh→h
1h0 , x→x1gh0t, which is the analog for our system of th
usual Galilean invariance of Burgers equations~see, for ex-
ample, @10#!. The absence of corrections to Eqs.~37! and
~39! follows from the fact that the vertexg carries a factor
kx . As a result, all perturbative contributions to the respon
function self-energy and the noise correlator carry factors
kx

2 .
Let us first examine the linear theory (g50) to identify

the critical dimensiondc . In the linear theory, there are n
perturbative corrections and Eqs.~37!–~40! all hold exactly.
From Eqs.~37!–~39! we obtain

z052, z05
2

11m
, x05

72m22d

2~11m!
, ~41!

where the subscripts indicate that these are the results o
free theory. Inserting these exponents into Eq.~40! gives
Dx85b24/(11m)Dx , indicating thatDx flows to zero at this
fixed point.
4-5
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Equation~36! determines the relevance, at the trivial fixe
point, of the shear rateg. From Eq.~41! we obtainx01z0
215(91m22d)/@2(11m)#. Hence g is relevant ford
,dc , where

dc5~91m!/2, m>1. ~42!

For d,dc , we expect a new fixed point to appear at whi
g, l, andD are all nonzero. Equations~36!, ~37!, and ~39!
give the corresponding exponents exactly

z5
3~11m!

612m2d
, z5

3

612m2d
, x5

32m2d

612m2d
.

~43!

We recall that in order for our calculation to be consistent
must havez<1, such thatuku;uk'u. From relations~41! and
~43! we see that this condition requiresm>1, consistent with
the case we are currently analyzing.

Exponents~43! are correct only if the fixed point value
of the parametersg, l, and D are all nonzero, otherwise
their scaling dimensions cannot be set equal to zero.
check this fact we perform a one-loop RG calculation
compute the perturbative corrections tonx . In general, inte-
gration over the hard modes gives the following equation
the renormalized propagatorG,(k,v) ~see Fig. 1!:

G,~k,v!5G~k,v!1G~k,v!S~k,v!G,~k,v!, ~44!

where the bare propagator is given by

G~k,v!2152 iv1nxkx
21luk'u11m, ~45!

and the self-energyS(k,v) must be calculated perturba
tively in g. From the relation

G,~k,v!215G~k,v!212S~k,v! ~46!

we clearly see that the perturbative corrections tonx come
from terms of orderkx

2 in S(k,v). Setting b5el , with l
infinitesimal, Eqs.~38! and ~46! yield

dnx

dl
5nxF ~z22!2 lim

k→0

1

nxkx
2l

S~k,0!G . ~47!

The standard one-loop diagram for the self-energy is sho
in Fig. 2 ~see, for example,@10#!. Full circles representg

FIG. 1. Dyson equation for the propagator in terms of the b
propagator~single lines! and the self-energy~hatched circle!.

FIG. 2. One-loop contribution to the self-energy. The intern
lines also carry frequency labels~not shown!.
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vertices, open circles represent contractions of the no
^hkh2k&;D, and arrows are bare propagators. The lead
term of the self-energy in the limit (k,v)→0 is given by

S~k,0!52g2DE
V,q.

kxS kx

2
2qxD UGS k

2
1q,V D U2

3GS k

2
2q,V D Uk'

2
1q'U

52
2~612m2d!

m152d
Unxkx

2l , ~48!

U5
Sd22

8~m11!~2p!d22
GS d1m23

m11 DGS 612m2d

m11 D
3g2Dl (32d2m)/(m11)nx

2(612m2d)/(m11) . ~49!

In the above expressionG(u) is the gamma function and
Sd22 is the surface area of the unit sphere ind22 dimen-
sions. The notation (V,q.) means that we integrate with th
measuredVdqxdq' /(2p)d21, within the outer shellLe2 l

,uqxu,L. Due to the anisotropic nature of the nonlineari
there is no need to introduce a cutoff forq' . Furthermore,
we have takenL51 without loss of generality.

Putting together Eqs.~47!, ~48!, and ~49! and using the
scaling dimensions of the parametersg, l, andD, we finally
obtain the RG flow equation for the effective coupling co
stantU

dU

dl
5

91m22d

m11
U2

2~612m2d!2

~m11!~m152d!
U2. ~50!

Consistent with our previous determination of the critic
dimension, we see that the linear term in the flow equat
changes sign ford5dc5(91m)/2. Moreover, the quadratic
term is negative, implying that for anyd,dc there is a non-
zero stable fixed pointU!5O(e), with e5dc2d. The RG
perturbative expansion is thus well behaved and the fi
point values ofg, l, andD for d,dc are finite. The expo-
nents ~43! are therefore correct. On the other hand, ford
.dc the only stable fixed point isU!50, corresponding to
an irrelevant nonlinearity and thus giving the ‘‘free’’ expo
nents of Eq.~41!.

B. CaseµË1

For m,1, Eq.~41! givesz.1 for the free theory, violat-
ing the assumptionz,1 under which Eq.~41! was derived.
This suggests we look for a solution withz>1. In this case,
kx will dominate over~or be the same order as! k' in uku.
The recursion relations forl, nx , andD become

l85bz2(11m)l, ~51!

nx85bz22nx1•••, ~52!

D85bz22x212(m21)2(d22)zD, ~53!

e

l
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instead of Eqs.~37!–~39!. At the fixed point of the free
theory (g50), Eq. ~51! gives z511m, so that Eq.~52!
becomesnx85bm21nx , i.e., nx is driven to zero, sincem
,1. The theory withnx505g is completely isotropic, so
z51. Insertingz511m and z51 in Eq. ~53! givesx5(3
2d)/2. Summarizing, the exponents of the free theory
m,1 are

z0511m, z051, x05~32d!/2, ~54!

which coincides with Eq.~41! in the limit m→1.
The relevance ofg is again determined by Eq.~36!. From

Eq. ~54!, the combinationx1z21 is given, for the free
theory, byx01z0215(312m2d)/2. Hence, form,1, g
is relevant below the new critical dimension

dc85312m, m,1. ~55!

Note thatdc8 differs from the critical dimensiondc found for
the casem>1 in Eq. ~42!, namely,dc8,dc . On the other
hand they coincide in the limitm→1.

For d,dc8 , from Eq. ~43! one again obtainsz,1 and,
therefore, it is tempting to conclude that these are the cor
exponents even for them,1 case, provided thatd,dc8 . As a
further consistency check, one may note that these expon
reproduce the ones of the free theory given by Eq.~54! for
d→dc8 . Unfortunately, the situation is not as simple as th
If we perform a one-loop perturbative expansion belowdc8 ,
we formally get the same flow Eq.~50!, sincez,1 in this
regime. However, as we have seen, the fixed point of
equation is of ordere5dc2d, which is not small for d
;dc8 . In other words, because of the gap betweendc8 anddc ,
the one-loop expansion in the form stated above is not un
control in the regimem,1. We were not able to find a pe
turbatively consistent solution in this phase. As a con
quence, we can only conjecture that the exponents we h
found for m,1 are correct, since they lack a substant
perturbative support.

Finally, let us note that although one can formally find
solution with z.1, all the terms involvingk' drop out at
this fixed point, and the equation becomes essentially
dimensional, which is unphysical. We therefore reject t
possibility.

C. CasedÄ2

Some of the results derived above only hold ford.2.
This is because the idea thatk' dominateskx in uku is clearly
inapplicable ind52, since there is onlykx . Similarly, the
exponentz can no longer be defined, so there are just t
independent exponents,z andx. The equation of motion and
noise correlator are given by Eqs.~34! and~35!, respectively,
but with uku replaced byukxu. We recall that modelH (m
50) is ill defined ford52.

The RG recursion relations ford52 become

g85bx1z21g, ~56!

l85bz2m21l, ~57!
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nx85bz22nx1•••, ~58!

D85bz22x2mD, ~59!

Dx85bz22x23Dx1•••. ~60!

Equations~56!, ~57!, and ~59! are exact, and, therefore,
seems that we have three equations for just two unkno
exponentsx andz. This apparent paradox is solved if one
the parameters is zero at the fixed point, since in this case
corresponding equation is trivially satisfied without setti
the scaling dimension to zero. The shear rateg is certainly
relevant, sinced52 is below the critical dimension. If we
assumeD→0, using Eqs.~56! and~57! we getx1z51 and
z5m11, giving x52m. This would imply a positive scal-
ing dimension forD, which is inconsistent withD→0. Thus,
we must assumel→0, and find from Eqs.~56! and ~59!,
x1z51 andz22x5m at the fixed point, giving

z5~21m!/3, x5~12m!/3 ~61!

in d52. Inserting these results into Eq.~57! gives l8
5b2(112m)/3l, so l flows to zero ind52, as assumed, fo
all m.21/2.

IV. STABILITY OF THE DOMAINS

The calculations of the previous sections are importan
assess the stability of the highly stretched domains in
coarsening system under shear. We recall that we are con
ering a shear velocity profile with flow in thex direction and
gradient in they direction. We denote byx' all the directions
orthogonal to bothx andy for d>3. The effect of the shea
is to stretch the coarsening domains such that there are
different length scalesL i along thex direction andL' in all
the orthogonal directions. The transverse size of the dom
L' is in general much smaller than longitudinal oneL i @2,3#.
What we have to check is whether the sizeD of the height
fluctuation is larger thanL' , inducing a breaking of the
domains, or whetherD,L' , meaning that the domains ar
stable under thermal fluctuations.

In the long-time limit, the main orientation of the domain
will be almost completely parallel to the shear flow, an
therefore, height fluctuations in the surface of the doma
grow in a direction orthogonal tox. In d52, this implies that
the only relevant fluctuations are in they, that ish, direction.
On the other hand, ford53, there are also fluctuations grow
ing in thex' direction, which arenot described by Eq.~1!.
These two cases will, therefore, be treated separately.

A. CasedÄ2

In two dimensions the height fluctuations of the surfa
are given by the fluctuations of the fieldh. Thus, as a con-
sequence of the scaling relationh(x,t)5bxh8(x8,t8) @see
Eq. ~33!#, the height fluctuationD grows as

D;h;tx/zF~ t/L i
z!, ~62!
4-7
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where the scaling functionF goes to a constant for sma
argument andF(s);s2x/z for s→`. This means that ift1/z

!L i the surface grows likeD;tx/z, whereas ift1/z@L i , we
haveD;L i

x . We can incorporate both limits in the form

D;min~ tx/z,L i
x!. ~63!

In two dimensions we need only consider modelsA (m
51) andB (m52).

1. Model A

In this case the critical dimension isdc55, so ford52
the shear is relevant. From the former sections we havx
50 andz51. Equation~63! therefore implies that, whateve
valueL i takes, the height fluctuationD will be of order unity.
In @6# it has been shown that for modelA the transverse
domain size isL';O(1). This is an analytical result ob
tained in the context of the Ohta-Jasnow-Kawasaki appr
mation. This gives

D;L' ~d52!, model A. ~64!

We conclude that modelA in two dimensions is a margina
case, and we cannot exclude the possibility that thermal fl
tuations may in this case break the domains giving rise
stationary state.

2. Model B

For modelB we havedc511/5.2, and the exponents ar
x521/3, z54/3. Also in this case, therefore, we do n
need to know the coarsening exponent forL i , since from
relation ~63! it is clear that a negative value ofx implies a
saturation ofD to a constant value

D;O~1! ~d52!, model B. ~65!

This result opens up two different scenarios, according to
the growth law forL' . If L';t1/3, as argued in@4# by means
of numerical experiments and RG arguments, thenD!L'

and the domains must be stable against thermal fluctuati
If, however, L';O(1), as suggested by some recent n
merical simulations@8#, then, as in modelA, we cannot ex-
clude the possibility that a breaking of the domains by th
mal fluctuations occurs. Our result shows that aL';t1/3

growth law and a thermally induced stretching and break
mechanism are not compatible. Conversely, if a therm
induced breaking of the domains is clearly observed in
merical experiments, this strongly suggests that the rela
L';O(1) holds.

B. CasedÄ3

In three dimensions the situation is more complicat
First, as ind52, there are height fluctuations in they direc-
tion, Dy;h, described by Eq.~1!. Secondly, there are fluc
tuations in thex' direction D' , which can also become
larger thanL' and that are not described by Eq.~1!. Thus,
before assessing the stability of the domains ford53 we
must formulate an equation for the description of these la
01610
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fluctuations. Fortunately, this will turn out to be a line
equation, such that no perturbative RG analysis is neces

In order to describe surface fluctuations which grow in t
x' direction we have to introduce a new height fieldh'

which satisfies the equation

] th'1gy]xh'5Lh'1h ~66!

to be compared with Eq.~1!. The operatorL is still given at
low momenta byL;luku11m. Equation~66! is linear and,
therefore, we can work out the exponents exactly by me
of simple scaling. By setting

x5bx8, y5bzy8, h'5bxh'8 , t5bzt8, ~67!

and imposing scale invariance of Eq.~66!, we obtain~with
the usual hypothesisz,1),

g85bz211zg, ~68!

l85bz2z(m11)l, ~69!

D85bz22x2zm21D, ~70!

and setting to zero the scaling dimensions of all three par
eters gives

z5
m11

m12
, z5

1

m12
, x52

m11

2~m12!
. ~71!

Note thatz is smaller than one, consistent with our assum
tion. We see thatx is negative for all the three interestin
values of m (m50,1,2), meaning that height fluctuation
along thex' direction are always finite,D';O(1).

We have to assess now the physical importance ofDy in
the context of domain coarsening. From the usual sca
relations we get

Dy;h;tx/zF~ t/L i
z ,t/L'

z/z!. ~72!

In general, evaluating the magnitude ofDy from this relation
is quite subtle, as we need to compare the interfacial co
ening and equilibrium regimes in both the parallel and p
pendicular directions. However, as we discuss below, in
cases of physical interest we havex<0 implying that the
interfacial fluctuations saturate.

1. Model A

In the casem51 andd53, Eq. ~43!, with m51, gives
x521/5, and thereforeDy;O(1). FormodelA it was been
found in @6# that L';t1/2, giving

Dy!L' ~d53!, model A. ~73!

In model A, domains are, therefore, stable against therm
fluctuations.

2. Model B

In this case also the exponentx is negative: Eq.~43! with
m52 givesx522/7, andz59/7, yielding
4-8
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Dy;O~1! ~d53!, model B. ~74!

Even though no analytical results or numerical simulatio
studies are available at the present for modelB in d53, we
certainly expectL' to grow with time in this case and, there
fore, the domains to be stable.

3. Model H

For m,1, as we have seen, we have a different criti
dimension given by Eq.~55!, which is exactly three form
50. This implies, using either Eq.~54! or Eq. ~43!, that x
50 andz51. Once again, this is the marginal case, with

Dy;O~1! ~d53!, model H. ~75!

V. SUMMARY

Interfacial fluctuations have been investigated in syste
subjected to an external shear flow. Interfacial dynamics
propriate to systems with nonconserved scalar order par
eter~modelA), conserved scalar order parameter~modelB),
and conserved scalar order parameter coupled to hydr
namic flow ~model H) have been studied. In each case t
interfacial dynamics is described by a similar equation of
form ~1!, whereh is the local height of the interface and
which the eigenvalue spectrum of the linear operatorL has
.
ys
-

,
,

.

,
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the form ~2!. The models differ principally in the numerica
value of the exponentm, which is given by 1, 2, and 0 for
modelsA, B, andH, respectively.

The interface equations have the form of anisotropic no
Burgers equations. In each case, exact renormalization g
~RG! arguments determine the exponentsz, z, and x that
characterize the coarsening, anisotropy, and roughenin
the interface, respectively. In all cases,x<0 implying that
the thermally induced interfacial width approaches a fin
limit at infinite time. A consequence of this result is that t
domain structure of a coarsening system under shear is s
against~sufficiently weak! thermal fluctuations.

The general framework revealed by the exact RG re
tions was supported by explicit one-loop calculations form
>1. For m,1, however, no one-loop equations consiste
with the expected critical dimensiondc85312m could be
derived. Whether this is just a technical difficulty, or signa
some important physical difference between the regimem
>1 andm,1, merits further investigation.
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